August 17, 2006

Creating a Gopher server with PHP and
InetD

This tutorial will teach you how to create a Gopher Server using InetD with PHP. This will
teach you how to create a simple socket server using InetD and it will teach you
something about the gopher protocol.

Gopher

A long time ago, in the early nineties Gopher was the prefered way to access internet
content.. Only later on Tim Berners Lee's HTTP/WWW idea took off. Sixapart recently
wrote an article about this chapter of ancient internet history.

Gopher basically has a few main functions and it is kind of restricted to that. This is
listing directories (or menu's), serving files and searching. One of the most innovative
ideas was that hyperlinks were tightly integrated in the protocol. The modern internet is
in a sense based on this important concept. If you want to see a gopher server in action,
check out: gopher://gopher.quux.org/. Only a few browser support this protocol, among
them are Firefox 1.5 or higher, Camino 1.0 or higher, or a recent Seamonkey or Flock. IE
used to support it, but because of a security bug a while ago they didn't fix it, but disabled
it instead. Lynx will also work if you're on linux.

InetD

InetD has to be the easiest way to write a socket server, you simply make an entry in
/etc/inetd.conf and you can make it work with standard input/output.. more about this
later.

What do you need?

The examples here are written for PHP 5.1.x, it will most likely also work in PHP 5.0.x, but
you can't run it in 4.x.. further, you need root access to a unix server with inetd installed
(usually any linux server comes with inetd). You also need a gopher-compatible browser.
You can download the files for this tutorial here, but this is not required.

Lets get started..

We will first write a basic telnet server, because this is the easiest thing to do. We will

make a telnet server that waits for a line to be entered and it will then echo exactly that
and break the connection.

If we would be using the socket_* functions things would probably be a bit harder, but for
us the script will actually look like this:

#!/usr/bin/php
<?php

Sdata = fgets (STDIN) ;
echo('You said: ' . Sdata);
e

The first line (#!/ust/bin/php) is a special way of telling linux to use the php interpreter
for the rest of the file. If PHP is installed in a non-standard location (other than /usr/bin)
you can find it by typing whereis php on the command line. fgets() is php's function to
return 1 line from an open file. STDIN is a constant that refers to unix standard input.

Making it run
Give this testfile the +x permission, you can do that using the following command line:

chmod +x filename.php

This tells linux (or mac) this file is allowed to run as an executable.

Try running it with . /testsocket.php (or whatever filename you gave it. If everything
worked as expected it will wait till you type something in and press enter, and it will reply
with the exact same thing and exit.

Turning it into a telnet server

To do this you will need to edit your /etc/inetd.conf file. Open it with your favourite
editor and add this line:

telnet stream tcp nowait www-data /path/to/your/testsocket.php

The spaces in between are either regular spaces or tabs. Be sure to change the last
parameter to the correct path to your script. This runs the script with the username
‘www-data’, which is the default username for the apache server on Debian. You might
want to change it to the user your apache server runs on.. this can either be www-data,
nobody, apache, httpd or a few others. You can also run the script as root, but this gives

the script privileges you might not want to give it (all of them).

This binds the script to the default telnet port (which is 23). Now you need to restart
inetd to force it to reload the settings files. You can do that by running the following
command (as root):

killall -HUP inetd

You can try your new telnet server out by running telnet localhost from the command
line, or if you want to try it from another machine, run : telnet yourhostname.com Or

telnet://yourhostname.com.

If it didn't work for you, you might want to check out your system logs.. it could tell you a
bit more. You can do that (on some/most) systems with:

tail -f /var/log/syslog

The last entry(ies) should give you information.
And now.. gopher

In order to do this, I need to explain a bit more about the gopher protocol. When a gopher
client connects to a gopher server, it will first send a string containing the information it
wants followed by a linebreak ("\n") after that the gopher server throws back the
information it requested.

If you go to the root of a gopher server it will start out with a directory listing, like
gopher://gopher.quux.org/.

View source in firefox won't help you, gopher uses a special format to submit this
directory listing. Every item (including text-lines) are sent on 1 line (separated by \n).
This is how a line is built up:

[itemType]Name[tab]location[tablserver[tab]port[linebreak]

ItemType is a single character which tells the client what type of item this is. 0 means
file, 1 means directory, 8 means telnet link, I means an image file and i is informational
text.

At the end of the directory listing you'll find a . and the server closes the connection.

A simple gopher server

Add in another line in /etc/inetd.conf. You can write it in the exact same way, but start the
line with gopher instead of telnet. Don't forget to restart!

gopher stream tcp nowait www-data /path/to/your/gopherserver.php

For our gopherserver.php, we will start out with a simple class that does some of the work
for us. It is highly recommended to check out the class first, you can find it here. I decided
not to put it here, because there's a lot of code. The code is pretty much self-explanatory.

Now, our gopherserver will look like this:

#!/usr/bin/php
<?php

require once 'Gopher/Server.php';
Sserver = new Gopher Server();
Sserver->setHostname ('gopher.rooftopsolutions.nl');

Sserver—->exec () ;

Now you should have your own gopher server running. The server class is not complete
though. Whatever you will serve it, it will reply with the exact same response. If you want
plan to make this running you should change the processRequest method to return the
correct results.

You will find a bunch of constants for the types of files you can serve. If you want to serve
a binary file it doesn't matter if you use G_BINARY, G_ MACFILE or G_DOSFILE. A bunch
of them is not supported in modern clients.

Thats it for this tutorial, we have a proof of concept server running and you should be
able to extend it to actually serve information. If people are interested I can make a
follow-up tutorial which would explain the search feature, handling urls to the HTTP
web.. let me know if it worked for you.

