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Harmonics (1)

Harmonic rhythm. Literally, the rhythm or rhythmic
pattern of harmonic progression in a musical passage;
that is, the rhythm articulated by the chords that make up
the progression. Usually, however, the term refers simply
to the rate of change of chords, which could equally well
be called ‘harmonic tempo’.

See HARMONY and RHYTHM.

Harmonics. Sets of musical notes whose frequencies are
related by simple whole number ratios. A harmonic series
is a set of frequencies which are successive integer
multiples of the fundamental (or first harmonic). For
example, the set of frequencies 100, 200, 300, 400, 500
Hz ... is a harmonic series whose fundamental is 100 Hz
and whose fifth harmonic is 500 Hz. In general, the nth
harmonic of a series has a frequency which is # times the
fundamental frequency.

1. General. 2. Wind instruments. 3. Strings

1. GENERAL. The importance of harmonics in various
branches of music theory and practice derives ultimately
from the way in which sound is perceived by the human
ear and brain. The pressure fluctuations at the eardrum
of a listener, which give rise to the sensation of sound
(musical or otherwise), normally have a complex pattern
or waveform. In 1822 the French mathematician Fourier
showed that any waveform, however complex, could be
decomposed into a set of simple sine wave components.
If the waveform is periodic, corresponding to a regularly
repeating pattern of pressure variation, then its sine wave
components are members of a harmonic series. In this
case it is difficult to perceive the components separately;
they are fused into a single sound with a definite musical
pitch. In contrast, a sound which has a set of components
which are not harmonics (or close approximations to
harmonics) will not normally be perceived as having a
clear pitch, and the components can be heard separately.
The pitch associated with a harmonic series is that of the
fundamental or first harmonic; the frequency spectrum,

which describes the relative strengths of the frequency
components, helps to determine the timbre of the note,
with an increase in the strength of upper harmonics giving
an increased brightness to the sound.

The 19th-century acoustician Helmholtz developed a
theory which related the dissonance of a musical interval
to the degree of beating between the harmonics of the
different notes forming the interval. Notes whose funda-
mental frequencies are related by small whole number
ratios have reduced beating because of coincidences
between the frequencies of the harmonics concerned (see
INTERVAL); this may at least partially explain why several
of the intervals between successive members of the
harmonic series are of great importance in Western music.
The intervals between the first 25 harmonics, to the
nearest cent, are shown in Table 1, which also gives the
pitches of the harmonics for a series whose fundamental
pitch is C.

2. WIND INSTRUMENTS. A wind instrument, convention-
ally blown, generates a continuous pitched note corre-
sponding to a periodic waveform and a harmonic set of
frequency components. Usually several different pitches
can be obtained for a fixed pattern of fingering or valve
depression; these pitches are described as the natural
notes of the instrument. The fundamental frequency of a
natural note is determined by a complex interaction
between the tone generator (air jet, reed or lips) and the
air column of the instrument (see ACOUSTICS, §IV).

In most wind instruments, the air column has a series
of resonances whose frequencies are close to being
members of a harmonic series. It is important to realize,
however, that in real wind instruments the air column
resonances are never perfectly harmonic. The fundamental
frequency of the sounded note is usually close to one of
the air column resonances; to move from one resonance
to another the player modifies the tone generator (for
example, by changing the lip pressure on a reed),
sometimes also opening a register key to modify the air
column. When a new air column resonance has been
selected, a new note is established, for which the
fundamental frequency is close to the new air column
resonance. Associated with the new note will be an exactly
harmonic set of frequency components, since the new
vibration pattern is periodic; but whether the interval
between the new note and the old corresponds to an
exactly harmonic interval will depend on the skill with
which the instrument maker tuned the air column
resonances, and the extent to which the player ‘pulls’ the
note by adjusting the method of blowing.

Despite the fact that the natural notes obtained in the
way described above are not necessarily exact harmonics,
the term ‘harmonic’ is customarily used as a synonym for
‘natural note’, and this usage will be followed in the
remainder of the article. On the flute, the second air
column resonance is approximately an octave above the
first, so that an octave harmonic can be obtained; subtle
adjustment of blowing pressure and angle can correct the
intonation as required. On the clarinet the second air
column resonance frequency is approximately three times
that of the first, so the second register is a 12th above the
first, corresponding to the third harmonic. In the harmonic
flute organ pipe, a small hole is bored approximately half
way along the tube, at a point which is a pressure antinode
for thefirst resonance of the air column. This effectively
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TABLE 1
Harmonic Interval from fundamental Note Interval between harmonics

1 € 1200 cents (octave)
2 1 octave c 701-96 cents (perfect Sth)
3 1 octave + 701-96 cents g 498-04 cents (perfect 4th)
4 2 octaves ¢ 386-31 cents (major 3rd)
5 2 octaves + 386-31 cents e 315-64 cents (minor 3rd)
6 2 octaves + 701-96 cents g 26687 cents
7 2 octaves + 968-83 cents 23117 cents
8 3 octaves " 20391 cents (major tone)
9 3 octaves + 203-91 cents d’ 182-40 cents (minor tone)
10 3 octaves + 386:31 cents e’ 165-00 cents
11 3 octaves + 551-32 cents 150-64 cents
12 3 octaves + 701-96 cents g” 138-57 cents
13 3 octaves + 840-53 cents 128-30 cents
14 3 octaves + 968-83 cents 119-44 cents
15 3 octaves + 1088-27 cents b” 11173 cents (diatonic semitone)
16 4 octaves " 104-96 cents (used by J. Wallis)
17 4 octaves + 104-96 cents 98-95 cents (used by J. Wallis)
18 4 octaves + 203-91 cents d” 93-60 cents (used by J. Wallis)
19 4 octaves + 29751 cents 88.80 cents (used by J. Wallis)
20 4 octaves + 386-31 cents e” 84-47 cents
21 4 octaves + 470-78 cents 80-64 cents
22 4 octaves + 551-32 cents 76-96 cents
23 4 octaves + 628-27 cents 73-68 cents
24 4 octaves + 701-96 cents g” 70-67 cents (chromatic
! semitone)

25 4 octaves + 772-63 cents g8

kills the first resonance, encouraging the pipe to sound at
the second harmonic, an octave above the first.

On brass instruments, with their longer and narrower
tubes, a greater number of harmonics is obtained by
tightening the lips; these harmonics provide the only basic
notes on the natural (i.e. slideless, keyless and valveless)
trumpet and horn. Bach regularly wrote for the trumpet
notes between the 3rd and 18th harmonics and once, in
Cantata no.31, wrote for the 20th harmonic. Mozart
wrote for the horn from the 2nd harmonic to the 24th (12
Duos for two horns k487/496a).

It can be seen from Table 1 that harmonics which are
multiples of prime numbers above 5 (e.g. nos.7, 11, 13
and 14) do not correspond to recognized notes in the
equal-tempered scale. However, on a C trumpet nos.7
and 14 can fairly easily be lipped up to bp, and skilled
trumpeters can lip no.11 down to f” or up to " and
no.13 up to a”; composers regularly wrote these notes.
Some trumpeters were more skilled at this than others, as
can be seen in the writings of 18th-century music
historians. The problem was solved by means of hand-
stopping on the horn and the use of a slide on the trumpet,
before the invention of valves made it unnecessary to use
these particular harmonics. Harmonics nos.17 and 19 are
good approximations of c#” and d4”, but composers do
not seem to have used them.

The timbral effects of harmonics have long been used
in organ building. Although organ pipes possess a wide
harmonic range, the effect can be heightened without
forcing by adding further pipes whose fundamentals are
the harmonics of the foundation or ‘diapason’ ranks.
Since the 15th century these extra ranks have been made
to draw separately, and the organist can synthesize a
variety of tone qualities by combining stops corresponding
to the 1st to 6th harmonics and compound stops of pre-
set combinations of harmonics such as nos.6, 8, 12 and
16 (Mixture), 3, 4 and 5 (Cornet), 3 and 5 (Sesquialtera)
or even occasionally nos. 5, 6, 7 and 8 (‘harmonics’).

Harmonics nos.1, 3 and 5§ on flute-toned stops, for
example, synthesize quite a good imitation of a clarinet.
Some keyboard ELECTRONIC INSTRUMENTS also use this
principle to synthesize various tone-colours, a technique
known as additive synthesis. For further discussion of the
acoustical basis of harmonics see SOUND, §6(ii).

3. STRINGS. It was noted in the previous section that the
resonance frequencies of the air column in a real wind
instrument are never exact harmonics; the same is true of
the resonance frequencies of a real musical instrument
string. An ideal, completely flexible string with absolutely
rigid supports would have an exactly harmonic set of
resonances; in practice these conditions are never met,
and the resonance frequencies are usually slightly further
apart than a true harmonic series (see INHARMONICITY).
This results in an interesting distinction between plucked
and bowed notes. Bowing a string in the normal manner
gives a periodic vibration of the string, and the sound
therefore has a frequency spectrum containing exact
harmonics (neglecting some minor transient effects).
When a string is plucked or struck, in contrast, each
resonance of the string radiates sound at its own
frequency, giving a slightly inharmonic frequency spec-
trum. The inharmonicity is usually negligible for violin
and guitar strings, but is of considerable significance in
pianos.

A bowed string normally vibrates at a frequency very
close to that of the first string resonance. The mode of
vibration corresponding to this resonance has a displace-
ment antinode (point of maximum amplitude of vibration)
at the centre of the string. Touching the string lightly at
this point kills the vibration of the first mode, but leaves
the second mode unscathed, since it has a node at the
centre; the string then establishes a new vibration pattern,
with a vibration frequency corresponding to the second
string resonance. Neglecting the very small inharmonicity
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of the string resonances, this new note is described as the
second harmonic of the string.

Upper harmonics are often used for special effects on
string instruments and on the harp. In the violin family,
the use of harmonics of open strings, ‘natural’ harmonics
(“flageolet tones’), was introduced by Mondonville in Les
sons harmoniques: sonates a violon seul avec la basse
continue op.4 (¢1738). In his preface he explained how
to obtain harmonics nos.2, 3, 4, 5, 6, 8 and above by
lightly fingering at a node on any string. The sonatas
make considerable use of harmonics nos.2, 3, 4 and 5.
For the 2nd harmonic, the note is fingered in its normal
position but only lightly. For the 3rd, 4th and Sth
harmonics, the player fingers lightly as if to play a perfect
5th, 4th or major 3rd above the open string (or at other
nodal points: at any multiple of an nth of the distance
along the string for an nth harmonic); harmonics sounding
a 12th, two octaves and a 17th above the open string are
obtained. In ex.la the special sign above each notehead
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indicates that the player fingers in the positions of the
lower notes on the g string and the upper notes (only) are
sounded. The passage in ex.1b sounds as in ex.lc,
assuming that both written notes are played as harmonics,
the upper line on the d’ string and the lower on the g.
Mondonville also used 2nd (octave) harmonics on the G
and d strings of the cello in the same sonatas. In modern
notation there is either a small circle over the actual note
or a diamond-headed note in the position of the nodal
point to be touched (e.g. Ravel: Ma mére I'oye).

The most commonly used ‘artificial” harmonics are 4th
harmonics of the written fingered notes, which sound two
octaves above those notes; they are obtained by fingering
the written note and lightly touching the string a perfect
4th above, and are notated by writing diamond-headed
notes a perfect 4th above the main note.

With a long string strongly bowed as many harmonics
may be obtained as on the trumpet. This was the principle
of the one-string TRUMPET MARINE, which could play
trumpet music with a characteristic out-of-tune effect on
the 4th and 6th of the scale.

On the harp 2nd harmonics, sounding one octave
above, are obtained by plucking the upper half of the
string with the side of the thumb and lightly touching the
mid-point of the string with the ball of the thumb. Harp
harmonics are designated by a small circle above the
written normal note of the string.
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Harmonic seventh. A term used by Euler and others for the
interval between the fourth and seventh harmonic partials
of a note. See SEPTIMAL SYSTEM.
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Sound. This article gives an introduction to the scientific
aspects of sound. For information on related topics see
ACOUSTICS (for matters connected with rooms, instru-
ments and the human voice), HEARING AND
PSYCHOACOUSTICS, PSYCHOLOGY OF MUSIC and
RECORDED SOUND; for the history of the study of sound,
see PHYSICS OF MUSIC.

1. History. 2. The nature of sound. 3. Visual representation of sound.
4. Human response and physical measurement. 5. Means of producing
musical tones: (i) Mechanical rotation (ii) Mechanical vibration (idi)
Electronic devices. 6. Origins of quality and tonal differences: (i)
Complex mixtures of pure tones (ii) Starting transients (iii) Envelope
shapes (iv) Formants. 7. The physics of tubes and horns. 8. Methods
of analysis and study: (i) Experimental (ii) Theoretical. 9. Tones in
sequence and combination. 10. The effect of acoustic environment.
11. Prospect.

1. HisTORY. Greek and Roman sources include numer-
ous references to scientific reflections on the nature and
origin of sound, and these seem to be the earliest recorded
thoughts indicating any attitude to music other than the
purely aesthetic. Many classical observers, however,
followed the Aristotelian method of thinking about an
experiment and imagining the results, a method which,
though of undoubted value as a starting-point, usually
led to conflicting conclusions if not checked against real
experiments. Also, a great deal of mysticism, especially
concerning numerical relationships, tended to obscure
more scientific ideas.

There followed a gap of 15-16 centuries during which
there was no development in the scientific study of sound.
But during the 16th and 17th centuries almost all of the
great scientists of the time devoted at least some of their
attention to the subject. Galileo made the first serious
study of vibrating strings and gave a plausible explanation
of the origin of consonance and dissonance, one that
remains generally acceptable. Healso introduced the idea
of demonstration by analogue, including the use of
pendula to demonstrate harmonic ratios. Boyle performed
the classical experiment to show that a medium is needed
for sound transmission; Descartes made studies of reso-
nance; Hooke recognized that a sound of definite pitch
can be derived from a rotating wheel; Mersenne formu-
lated laws of vibrating strings (though Galileo had laid
firm foundations in unpublished work); and Newton was
the first to make a theoretical derivation of the velocity of
sound and to compare it with experimental results.

In the 18th and 19th centuries discoveries came rapidly.
Young made full studies of the modes of vibration of
strings; Chladni studied vibrations of plates; Fourier
established the mathematical theories on whichallmodern
wave analysis is based; Wheatstone developed methods
of making sound waves visible; Faraday investigated
singing flames; the equal-tempered scale appeared; Koenig
studied the human ear’s pitch range; and Helmholtz
gathered all the studies together in a magnificent volume.
Bell produced the telephone and Edison the phonograph;
John Tyndall lectured in Britain and the USA, using
demonstrations that still have great impact and for which
much of the apparatus remains at the Royal Institution in
London. During the first half of the 20th century there
was a decline in progress, partly because scientists were
preoccupied with atomic physics. In the second half, new
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technological advances, largely deriving from these studies
(particularly those concerned with electronic measuring
devices), gave the study of sound a new lease of life. (For
further material on the history of the science of sound see
Miller).

2. THE NATURE OF SOUND. One of the earliest applica-
tions of the air pump was to show that sound cannot be
heard from a source in an evacuated vessel: intervening
air is necessary for transmission. But the air does not have
to travel; sound can pass through walls and windows.
The idea emerges, then, of transmission by means of
waves, that is by transfer of energy from point to point
without permanent change in the medium. Sound waves
involve tiny disturbances or changes in the pressure of the
air. The amount of the disturbance is small; a quiet
musical instrument might create changes in the atmos-
pheric pressure of only about one part in a million. Each
disturbance, which may be an increase or decrease in
pressure but is usually a complicated succession of both,
then travels out through the surrounding air creating
spherical wave surfaces round the origin of the sound - a
three-dimensional counterpart of the circular ripples
produced by a pebble striking the surface of a pond. The
waves in the air travel outwards at approximately 340
metres (m) per second.

Because the energy associated with a particular sound
is spread out over the surface of a sphere, it follows that
the fraction of the total energy that falls on a human ear
reduces as the square of the distance from the source.
Assuming that the area of sound-wave surface picked up
by an ear is 12-5 cm?, if the listener is 1 m away from the
source, the surface area of the sphere is then just over
125,000 cm? and so only about one ten-thousandth of the
energy is received by one ear; at 5 m the proportion would
be one quarter-millionth. In this calculation it is, of
course, assumed that the source is far from any objects
that would reflect or diffract the sound - in other words
that it is in empty space (except for air). Usually there is
an environment, even if it is only the ground, and in a
room the whole wave pattern is different. The effect of
room acoustics is discussed in §10 below and in
AcousTics, §1.

Sound, then, arises and is transmitted as tiny pressure
changes in the air. When any two hard objects collide
they produce a sound that might be described as a click
or a crash depending on its loudness. The simplest click
corresponds to a sudden rise in the pressure of the air,
produced by the air that was between the colliding objects
being forcibly squeezed out. The pressure then reduces,
usually overshoots the mark and after a few oscillations
falls to normal. Clicks may be combined in two ways. If
they follow each other in a random fashion, as for example
when an audience applauds, the resulting sound is
described as ‘noise’. It may be continuous and of uniform
loudness, but cannot easily be assigned a pitch. However,
if the clicks follow each other regularly they are heard
separately if well spaced in time (e.g. the ticks of a clock),
but if they are speeded up they begin to produce a sound
of definite musical pitch. The most obvious example is
the circular saw in which the teeth successively strike the
wood: as the speed of rotation rises, so does the pitch of
the sound. Any regularly repeated sequence of pressure
changes will give rise to the sensation of musical tones of
constant pitch if the sequence repeats at a frequency
between 18 and 15,000 times a second approximately;

o

1. Pressure variations in four different types of wave, all giving rise to
the same pitch but of different timbre; (d) is a pure tone or sine wave

the exact limits depend on individual variations in hearing,
and especially on the age of the listener (see §4 below).

What has been said concerns steady, unchanging
sounds; complications arise in the case of varying sounds.
Also, it is the regularity of repetition that gives a sound
the musical sensation of pitch; the repeating unit does not
matter. For example, fig.1 shows the pressure variations
(i.e. plots of amplitude against time) in four quite different
sorts of wave; all four would give rise to a steady sensation
of the same pitch, but the quality of the sound, or timbre,
would be quite different in each case. Fig.1d isa sine wave
(so called because the mathematical equation from which
it is derived is y = a sinnx); a treble recorder playing a
note steadily and fairly quietly with no trace of vibrato
gives a close approximation to a sine-wave tone. It is
important scientifically for two reasons. First, sine-wave
oscillation occurs naturally in a large number of systems
that are normally balanced in equilibrium and are then
slightly displaced. A child’s swing, the pendulum or
balance wheel of a clock, the air in a bottle when one
blows across its neck and the metal reed of a mouth organ
are all examples. Second, any wave, no matter how
complicated, can be represented by adding up the effects
of a large number of sine waves. This is the basis of
Fourier analysis and synthesis (see §8 below).

The question arises whether transmission through the
air leaves sound waves unchanged. Clearly, if the waves
are being created inside a room there are effects (see §10
below); and changes may occur in sounds transmitted
through electronic systems (radio, telephone, recording).
Here discussion is limited to some of the important effects
that can arise in the process of transmission through the
air. First, the speed of sound varies with the temperature,
humidity and pressure of the air, and with its exact
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composition (though this last factor is unlikely to vary
significantly except in highly artificial conditions, such as
those inside a spacecraft or diving bell). But uniform
changes in velocity of the magnitudes likely to arise in
nature can be detected only by precise measurement,
though non-uniform changes may produce quite noticea-
ble effects: the waves may travel along a curved or bent
path, that is, they may be ‘refracted’. For example, the
velocity of sound is greater at higher temperatures.
Suppose one listens to sounds in the open air near noon
on a hot summer day. The earth will have heated up and
the layers of air next to it will be correspondingly warm;
higher up the air will be much cooler. A sound wave
travelling towards an observer will thus tend to travel
more slowly some distance above the earth and more
quickly nearer to the ground, so the whole wave slews
round and goes up into the air. Sound cannot therefore
be heard at great distances, and this contributes to the
muffled and drowsy effect at midday in summer, O often
described by poets. On a clear night, however, the earth
cools rapidly, the blanket of air remains relatively warm
and the effect is reversed: sound waves tend to curve
down towards the earth and hence ‘carry’ much further.
Similar effects occur over water, and a combination of
the down-curving effect and good reflection at the water
surface can make audibility over a lake or pond excellent.

If a wave meets an object, various kinds of interaction
may occur. If the object is very small compared with the
wavelength of sound, the wave is hardly affected at all.
(The wavelength corresponding to ¢ isabout 1-25 mor 4
feet.) If the object is approximately the same size as the
wavelength, the waves tend to move in towards each
other again after passing on either side of it, and so,
effectively, go round corners; the sound is said to be
‘diffracted’. If the object is much larger, the main effect is
that the waves are reflected.

Diffraction or reflection can, under certain special
circumstances, lead to problems. Suppose, for example,
that sound finds its way to an observer by two routes of
different lengths. The extreme example is the ‘specific
echo’ heard in tunnels or before mountains, in which the
sound is repeated one or more times. But if the path
difference is not so great and the sound is a continuous
musical tone, the net result depends to a great extent on
the amount of ‘slide’ between the two waves. If it happens
that when the paths join up a peak of one coincides with
a peak of the other (i.e. if the waves are ‘in phase’), they
merely add to each other; but if a peak of one lies on a
trough of the other (i.e. if the waves are ‘out of phase’),
the waves effectively neutralize each other and no sound
is heard (fig.2). The easiest way to demonstrate this effect
is to listen to a high-pitched, steady note in a room; sound
will be received direct from the source and also by
reflection from the walls and the relative path lengths will
depend on position, so that the sound heard can be made
to rise and fall in loudness by moving the head. Phase is
important, and one can, for example, make or mar the
effect of a stereo system by feeding the loudspeakers in or
out of phase. It is essential that compressions received by
both microphones are reproduced as compressions by
both loudspeakers. If this is not so, the resulting sound is
diffuse and difficult to locate in space, because the ears
rely on phase differences to help in localizing sound.

The addition or diminution effect of two waves with a
phase difference is called ‘interference’. Perhaps the most
striking demonstration is that which can be performed

2. (a) Two waves ‘in phase’, adding to each other; (b) two waves ‘out
of phase’, neutralizing each other so that no sound is heard

with a tuning-fork. If a fork is struck and held about 5-8
cm from one ear, the sound will be found to rise and fall
in loudness as the fork is rotated. The following explana-
tion refers to fig.3, which represents a view looking down
on to the end of the fork. When the prongs move together
a compression moves out along directions A and B but in
directions C and D the result is a rarefaction. When the
prongs move apart again compressions move out along C
and D and rarefactions along A and B. Thus the waves in
directions A and B are exactly out of phase with those
along C and D, as is shown by the quadrants of circles. If
one listens in directions W, X, Y or Z one receives
simultaneously two waves exactly out of phase with each
other; they effectively neutralize one another, and practi-
cally no sound is heard.

Diffusion’ is a term sometimes used in discussing the
distribution of sound waves in a hall, implying a mixture
of reflection and diffraction from specially shaped panels
or reflectors so placed that sound waves that would
otherwise be ‘wasted’ can be deviated into more useful
directions. All the processes discussed above — refraction,
reflection, diffraction and interference — affect the direc-
tion, distribution and loudness of sounds but have
relatively little effect on their quality; the shapes of the
waves remain unchanged.

3. VISUAL REPRESENTATION OF SOUND. In any serious
research it is important to be able to describe the object
of study precisely, but in the case of sound this is
exceedingly difficult. It is possible to describe sounds in
words, in pictures or by association with colours, but
none of these representations can be called precise.
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3. View looking down on to the end of a vibrating tuning-fork,
showing interference; there is no sound in directions W, X, Y and Z

Musicians have traditionally used a symbolic notation
that is satisfactorily specific as far as the pitch and
duration of each required sound is concerned but is not
nearly good enough for scientific purposes, especially
when the quality of sounds is involved. On a musical
score quality is determined almost exclusively by giving
the name of an instrument; but there are almost as many
qualities associated with a particular category of instru-
ment as there are instruments, and it is rare to find a
composer specifying even in the most general way the
kind of violin, clarinet, bassoon etc. called for. Further-
more, interpretation of a score depends on precise
knowledge of the instruments. It is therefore necessary to
look for much more exact visual representations.

What is required is a means of portraying the exact
pressure at a point in the sound wave at every instant of
time. One of the earliest ways of doing this was very
direct; it consisted simply of letting the sound fall on a
thin diaphragm or membrane in the side of a gas pipe
feeding a flame. If the pressure on the membrane increased
a little the flame jumped and if it decreased the flame
sank. The flame was then viewed by reflection in a set of
mirrors arranged on the faces of a rotating block of
hexagonal or octagonal section. The effect was to spread
the images of the flame out horizontally and the variations
in height could be seen. Many elaborations and variations
of this device have been used during the last century or
so, and the device in current use is merely a sophisticated
version. The membrane is replaced by a microphone that
converts the pressure variations into variations in an
electric current instead of into variations of gas pressure.
This varying current is then fed to a cathode-ray
oscilloscope to give a graph of pressure against time.
Variation of the speed of the trace makes possible the
examination of the pressure variations in different degrees
of detail.

Fig.4 shows the wave trace of a series of staccato notes
(a’) on a treble recorder at the rate of six notes per second.
In fig.4a the trace lasts two seconds and 12 separate notes
can be seen. In fig.4b the trace lasts a third of a second
and two notes can be seen. In fig.4c the trace lasts 0-1
seconds and shows the beginning and middle of one note.

In fig.4d the trace lasts 0-014 seconds and the regular
waveform in the middle of the note can be seen. Many
important points are illustrated by these traces, and they
will be referred to again.

4, HUMAN RESPONSE AND PHYSICAL MEASUREMENT. One
of the most difficult problems in scientific study is to
devise methods of measuring quantities to which the
human senses respond in such a way that the measure-
ments bear some relationship to the subjective response.
In sound the first difficulty is the enormous range of
pressure variations to which the ear is sensitive. The
smallest disturbance of the air that can be detected as
sound by the average person involves atmospheric pres-
sure differences of about two parts in ten thousand
million; the largest disturbance that can be tolerated
without the sensation of sound turning into pain is about
a million times larger. A range of a million to one in
pressure variation is far beyond the scope of any single
physical instrument. The range of audible frequencies is
not quite so great — about a thousand to one. For both
pressure change and frequency the relationship between
stimulus and sensation is complicated. If a pure tone of
about 20 cycles per second, or 20 Hertz (Hz), which can
just be heard as a very low note by most people, is slowly
increased in frequency, the perceived sensation of pitch
gradually rises, and there is a sensation of ‘coming to rest’
periodically at certain points during the process. These
points are, musically speaking, an octave apart in pitch
and turn out always to correspond to an exact doubling
of the frequency, at least over the middle range (see below
for some complications). If two notes are played together
it is easy to adjust them by ear so that one is exactly
double the frequency of the other; if the ratio is not quite

4. Wave traces of a series of staccato notes (a’) on a treble recorder at
the rate of six notes per second; in (a) the trace lasts two seconds, (b)
a third of a second, (c) 0-1 seconds, (d) 0-014 seconds
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2:1 the result is harsh and unpleasant (the phenomenon
of the ‘stretched octave’, however, is discussed under
PsycHOLOGY OF Music, §II, 1(iii)). This logarithmic
relationship of doubling the stimulus to give equal
increments of sensation is quite common in relating
subjective and objective measurements; something like it
is found in relating pressure changes with loudness.

It is customary to work not in terms of pressure changes
but in terms of the energy associated with a wave. The
physical quantity most often used is the sound intensity,
and it is measured as the energy flow per second through
one square metre in units of watts per square metre. The
intensity of a sound is related to the square of the pressure
difference involved, and so the range of intensity to which
the ear is sensitive is a million million to one. The quietest
sound that can be heard has an intensity of one million-
millionth of a watt per square metre and the ‘threshold of
pain’ is one watt per square metre. Again the law relating
stimulus and sensation is roughly logarithmic, and
doublings of the intensity give something like equal
increments of loudness, though again there are complica-
tions (see below). These logarithmic laws are aspects of
the Weber-Fechner Law, whose most important result is
that to produce a noticeable increase in sensation the
extra stimulus required depends on the stimulus already
present. The idea is, of course, familiar: in conditions of
absolute silence one can hear a pin drop, whereas in a
noisy machine shop a hammer might fall unheard.

It is not possible to disentangle intensity and loudness
from frequency entirely; the ear’s response to sounds of
different intensities depends to a considerable extent on
their frequencies. Fig.5 shows a set of graphs that are
usually called equal loudness curves. They are produced
by asking a wide range of subjects to match in loudness
pairs of pure tones of differing pitch. Any one of the
curves on the diagram represents the actual intensity that
has to be produced as a physical quantity in the sound
wave to give the same sensation of loudness to the ear. It
is quite clear, for example, that for quiet sounds (the
lower curves) it requires a great deal more intensity at
low and at high frequencies to produce a given loudness
than it does in the middle around 1000 Hz (approximately
b”). At higher sound levels the curves are much flatter.
This is why uniform amplification in reproducing appa-
ratus is satisfactory when the volume of reproduction is
high, but at lower levels bass and treble boost is needed.
A special ‘loudness’ control is incorporated in some
amplifiers to make this correction automatically.

The curves in fig.5 are labelled in decibels (dB) and
phons. The decibel is a measure of level, either of sound
energy or of power in an electric circuit, and it relates to
the ratio of two quantities. It arises from the logarithmic
relationship already discussed and is an attempt to provide
a unit which, though based on physical measurement,
bears some relationship to perceived sensation. If the ratio
of two physically measured sound intensities is I,:1,, then
1, has a level # decibels above 1, if n = 10 log,, (I,/L,). Thus
since log,, 2 is 0-3010, if the ratio I;:I, is 2:1, I, is
approximately 3 decibels louder than I,. Decibel levels
can, of course, be added, so for example a sound that
starts at a level of 10 dB above some fixed standard and
is then amplified by a factor of two will finish up 13 dB
above the standard. In measuring sound or noise levels it
is usual to take the minimum sound that can be just heard
— the threshold of audibility already mentioned — as the
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5. Set of equal loudness curves after Kinsler and others

standard (usually defined as one million-millionth of a
watt per square metre). It will be obvious from fig.5 that
the frequency of the sound will have an influence, and
indeed the threshold is not the same at all frequencies. By
convention sound levels are measured by comparing them
with a 1000 Hz pure tone. If the sound being measured
seems to be as loud as'a standard 1000 Hz tone when
they are heard in alternate bursts, and if the 1000 Hz tone
has an intensity level of # dB, the sound being measured
is described as having an equivalent loudness of # phons.
Thus the curves of fig.5 show the intensity level at different
frequencies required to give a constant equivalent loud-
ness; the dB level at 1000 Hz can be seen to equal the
equivalent loudness in phons for each curve.

Difficulties begin when, instead of relating all measure-
ments to intensity as a physical quantity, one tries to
produce an entirely subjective scale (all the measurements
so far described, though they involve subjective matching,
always end up with intensity being measured on a meter).
One might, for example, assume that, if a sound A when
heard by only one ear seems to match in loudness a sound
B when heard by both ears, then B is half as loud as A. Or
one might try to estimate subjectively when one sound is
twice as Joud as another. Using this sort of strategy yet
another quantity has been introduced, the sone. It is a
truly subjective unit, and the complexities of trying to
relate, for example, the loudness in sones produced when
ten violins play together if separately each one has an
equivalent loudness of 60 phons aré beyond the scope of
this article. Fig.6, however, shows the approximate
relationship between equivalent loudness of a sound in
phons and its loudness in sones. One sone is arbitrarily
defined as 40 phons and, roughly, an increase of nine
phons is needed to give an increase of one sone.

To return to the impossibility of disentangling fre-
quency and intensity, it is often stated that there is a direct
relationship between frequency and pitch, and that the
physically measurable frequency completely defines the
sensation of pitch. The subjective sensation of pitch can,
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however, under certain circumstances, depend on the
intensity as well as the frequency. Fortunately the effect is
strong only when pure tones are involved; real instruments
produce much less striking changes. There seems to be
confusion over the exact nature of the effect. Some have
given quite specific relationships, but Taylor’s experiments
with a wide range of audiences produce variable results.
If a pure tone of absolutely constant frequency is suddenly
increased in intensity then, whatever its frequency, some
listeners think that it has risen in pitch, some that it has
stayed the same, and others that it has gone down.

The problems of relating pitch to frequency, however,
are of greater importance. It is convenient to introduce a
system of dividing the octave that takes note of the
logarithmic aspect of sensation, and then the various
intervals judged subjectively can be translated into this
physically measurable quantity - a division analogous to
the decibel for loudness measurements; the one incommon
use is the cent, a 100th part of an equal-tempered
semitone. As was the decibel, the cent is a logarithmic
measure of ratio, and intervals in cents may be added
together. If the interval ratio between two notes is I;:1;
then their interval is # cents if # log,, 2 = 1200 log,, (I,/
L,). Thus if the interval is one octave, I/I, is 2 and # is
1200. A perfect 5th has the interval ratio 3:2 and a perfect
4th 4:3, so together they give an octave since 3/2 x 4/3 =
2/1. Expressed in cents the 5th is 702 cents and the 4th
498 cents, and the sum of these is 1200, an octave. (For
further remarks on scales and intervals see §9 below.)
The cent, then, relates directly to physical measurement
of frequency, but it is important to recognize that the
system depends on tuning experiments in which two notes
are listened to simultaneously.

As was seen in §2 above, if two pure tones of identical
frequency and intensity are added together the net result
will depend on their phase difference. If the two waves
are just a little different in frequency then, even if the
source-to-ear distance remains fixed, the waves are
alternately in and out of phase along their lengths, and
the loudness rises and falls to give the familiar ‘beat’
phenomenon (fig.7a). The elimination of beats provides a
precise method of adjusting two notes to identical
frequency. If the notes are exactly an octave apart, they
will add to give a steady waveform and the resultiné
impression is smooth and steady (fig.7b); if they are not

c

7. (a) Waves alternately in and out of phase, giving rise to the ‘beat’
phenomenon; (b) waveform of two notes exactly an octave apart,
giving a smooth and steady impression; (c) waveforms of notes not
quite an octave apart, ‘changing step’; in each case the lowest graph
is the sum of the other two



Sound, §5(ii): Means of producing musical tones: Mechanical vibration 765

quite an octave apart again they will ‘change step’ and
the change can be detected by the ear though it is not as
marked as the beat effect (fig.7¢). If, however, two notes
are played successively rather than simultaneously and
observers are asked to judge when the pitch of one note is
twice or half the pitch of the other, estimates of intervals
are considerably different. A scale of pitch based on this
melodic judgment is measured in mels. Fig.8 shows the
relationship between frequency measured in Hz and
corresponding pitch measured in mels. The pitch of a
1000 Hz note is defined as 1000 mels. (For further
information on psychoacoustics see HEARING AND
PSYCHOACOUSTICS and PSYCHOLOGY OF MUSIC.)

5. MEANS OF PRODUCING MUSICAL TONES.

(i) Mechanical rotation. Since tones of specific frequency
have a repetitive waveform, the most obvious way to
generate them is from some system that is rotating, so
that the same sequence of events occurs in every
revolution. Most of the hums and whines associated with
machinery arise from this, and it is a familiar fact that as
the rotational frequency rises so the pitch of the tone goes
up. The only device constructed with the deliberate
intention of deriving a tone mechanically from a rotating
object is the siren, which in its simplest form is merely a
disc with a ring of equally spaced holes near its outer
periphery. The wheel is so arranged that a jet of air from
a pipe is alternately interrupted and allowed to proceed
through one of the holes as the disc is rotated. If the speed
of rotation is high enough, a succession of puffs of air at
a rate audible as a musical tone can be produced. Such a
wheel may be provided with several rings with different
numbers of holes in each. If the jet of air is directed at
different rows then, even though the rotational speed of
the disc remains constant, a sequence of notes can be
produced and simple tunes played. For example, if eight
rings of 24, 27, 30, 32, 36, 40, 45 and 48 holes are used,
a diatonic major scale results. The pitch ratio of a tone to
any other tone stays constant at any given rotational
speed (i.e. the siren will always produce a diatonic major
scale) but the absolute pitch depends on the speed of
rotation.

Such devices have only rarely been used as musical
instruments, but they do give useful frequency standards,
as it is relatively easy both to produce and to measure
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8. Graph showing the relationship between frequency measured in
Hz and corresponding pitch measured in mels (after Kinsler and
others)

steady rotational speeds. There are, however, several
devices that use rotating systems as the basis of their tone-
generators but make sound by electrical means, for
example the Hammond organ and the Compton electrone.

(1) Mechanical vibration. Almost anything can be made
to vibrate, but the frequency may be outside the audio
range, or it may be so heavily damped that the vibration
does not persist long enough for it to be heard. It is
impossible to separate the idea of vibration from the idea
of waves, and the time taken for a wave to travel from
one point to another is all-important in discussing
vibrations. Consider, for example, an open tube of about
2 cm internal diameter and 37-5 cm in length. If a puff of
air is sent in from one end, it will travel along until it
reaches the other; there it will suddenly find itself free to
expand into the open air and the resultant pressure
difference will cause more air from inside the pipe to
move out of the end. The result is that an expansion or
negative pulse — a momentary lowering of the pressure —
travels as a wave back to the front end. As soon as it
arrives back at the beginning, air from the outside is
pushed in to fill up the low pressure region, will over-
shoot the mark and another compression will travel
outward along the tube as did the first. The total time
taken to travel from one end to the other and back again
is the distance (75 cm) divided by the velocity (say 330 m
per second) and hence the number of double trips in a
second is 440, so the tube will produce the note &”. If the
palm of the hand is used to strike one open end, a ‘pop’
at this pitch can clearly be heard; and if a tuning-fork
producing 440 Hz is held near the open end, the pulses
produced by the fork are exactly in time with the pulses
travelling up and down the tube, and so the phenomenon
of resonance occurs: the fork appears to produce a much
louder note.

If a vibrating system is to be used as a musical
instrument, it must be possible to change its pitch, and
therefore to change the time it takes for a pulse to travel
through one cycle. This can be done either by changing
the dimensions of the object or by changing the velocity
of the pulse. To begin with the former, if the air tube had
been only 18-75 cm long, the pulse would make the
double journey in half the time; if it had been 75 cm long
it would take twice as long. The resultant notes would
thus be a” (880 Hz) and a (220 Hz) respectively. Thus by
far the simplest way of making a musical instrument is to
take a collection of vibrators of different sizes and use
one for each required note. The piano, organ, harp,
xylophone etc. all follow this principle. The next simplest
way is to use one vibrator but to change its length or the
velocity of the pulse each time a new note is required. In
string and woodwind instruments the effective length of
the vibrator is changed, and in the strings the tension also
can be changed; the tension alters the velocity of the wave
along the string, and hence the pitch of the note.

A difficulty that sometimes arises is that of relating
compression waves travelling up and down hollow pipes
with transverse waves travelling along a string. The
simplest way out of the difficulty is always to think of
‘disturbances’ travelling up and down. A disturbance may
be an increase of pressure in the air in a pipe, a decrease
of pressure in the air in a pipe, a sideways movement of a
stretched string, a longitudinal movement of the coils of
a spring, an increase or decrease in voltage or current in
an electrical circuit, and so on. It is customary to draw
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graphs of these disturbances showing time along the
direction of travel and the magnitude of the disturbance
vertically. Thus fig.1d might represent any of these kinds
of wave, with the vertical coordinate representing pres-
sure, voltage, lateral displacement etc. as appropriate.
The scientific quantity ‘amplitude’ is simply the amount
of the disturbance from the undisturbed state.

Before considering the third common method of pitch
changing it is necessary to note a complication in the
simple picture of pulses travelling up and down a pipe. If
a tuning-fork at a” (880 Hz) is held to the 37-5 cm pipe,
resonance still occurs, because although twice as many
wave crests are being sent into the tube, they travel at the
same velocity as before, and the first arrives back as the
third one goes in. Resonance will also occur at roughly
all integral multiples of the basic frequency. These
frequencies are usually called ‘harmonics’ of the basic
frequency. For many of the long thin vibrators used in
real musical instruments (pipes, strings etc.) the sequence
of frequencies at which vibrations will easily occur has
this harmonic relationship. In more complex shapes -
pipes of non-uniform bore, plates, cups, bottles etc. — the
times taken for pulses to travel in different directions and
to return are not so simply related, that is, the ‘modes of
vibration’ are not necessarily harmonic. The third basic
way of altering the pitch of an instrument involves
changing the mode of vibration. The brass family provides
the obvious examples and, to a first approximation, the
notes produced by a simple brass instrument without
valves (e.g. a bugle) have the harmonic frequency
relationships 1 : 2 : 3 : 4 etc. But there are considerable
complications (see §6 below).

Vibrational modes can be demonstrated on the piano.
If a single note is struck and released while the key
corresponding to the octave higher is held down to release
the damper, the octave string will be heard resonating
strongly: clearly it must be responding to the second
harmonic of the original note. Similarly, if the key
corresponding to a 12th higher is held down, the third
harmonic will be heard, and so on. A second demonstra-
tion involves a brass plate, firmly clamped on a pillar at
its midpoint and bowed on its edge with the finger placed
in various ways round the edge. A large number of modes
— each with a precise and characteristic frequency, though
not harmonically related to the lowest — can be produced
and the pattern of vibration can be revealed by scattering
sand on the plate. The sand moves away from the more
violently vibrating areas and patterns result (fig.9). In
general, the higher the frequency the more complicated
and detailed is the pattern. This experiment was originally
performed by Chladni in about 1790.

The term ‘mode’ simply refers to a particular pattern in
which an object may vibrate. One can refer to vibration
in a single mode or to vibration in several modes
simultaneously. The term ‘harmonic’ is strictly a mathe-
matical one and should be kept solely to describe modes
having frequencies that are exact multiples of some
fundamental frequency (the first harmonic), and the
number of the harmonic is always the number of the
multiple, even if all the harmonics are not present. Again
one may speak of a single harmonic or of a complex
mixture. The term ‘overtone’ always refers to modes of
frequency higher than that of the fundamental; they may
be harmonic but are not necessarily so, and they are
numbered in sequence as they occur with the one next
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9. Four modes of a Chladni plate, showing patterns formed by sand
moving away from the more violently vibrating areas

above the fundamental as the first. ‘Partial’ is almost
synonymous with overtone in that it refers to a component
of a mixture that may or may not be harmonic but its
numbering starts from the fundamental; the fundamental
is the first of the partial vibrations but is not an overtone.
To illustrate the nomenclature, consider a more-or-less
cylindrical pipe closed at one end that can be excited in
some way to give a sequence of modes, either separately
or simultaneously, that have frequencies 220, 660, 1090
and 1540 Hz. The mode of frequency 220 Hz is the
fundamental, the first harmonic and the first partial; the
mode of frequency 660 Hz is the first overtone, the second
partial but the third harmonic. The mode of frequency
1090 is the second overtone and the third partial - but is
not a harmonic (1100 would have been the 5th harmonic
if present) unless one sees the whole series in terms of an
absent fundamental of 10 Hz.

(i#i) Electronic devices. Two electrical methods were
mentioned above with rotation; this section concerns
methods in which the actual timing is electrical in origin.
Two categories will be considered: the first involves
electronic processes somewhat analogous to the mechan-
ical oscillations in traditional instruments; the second
involves the entirely artificial process of creating wave-
forms of the required shape by digital computer.

The howl produced when the volume control on a
public address system has been turned up too high is
produced by oscillations in the electric current that depend
on precisely the same phenomena as the kinds of vibration
already discussed. Any small sound picked up by the
microphone is amplified and passed to the loudspeaker,
from which it emerges only to fall on the microphone
again. But there is a delay because of the time taken for
the electric current to flow and for the sound itself to
travel from loudspeaker to microphone. All these times
stay constant, however, and so the sound goes on being
passed back and forth in a regular way (closely analogous
to movement of a compression wave in a pipe); therefore,
since the times are short, a tone or howl is produced. The
pitch can be varied by altering the distance between the
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microphone and loudspeaker, or by altering elements in
the electrical circuits to change the time delay there. This
is not a practical method, but in essence it is exactly the
same as that used in an electronic tone generator; there a
portion of the output current is effectively fed straight
back into the amplifier input instead of through a
microphone and loudspeaker. Modern electronic technol-
ogy makes it possible to produce oscillating systems that
are remarkably small and compact.

There are three principal ways in which such tone
generators can be used to produce musically usable
sounds, though these are now of little more than historical
interest. The least complicated, but rather cumbersome,
system is to use generators that will proeduce pure tones
and to mix these in various ways to produce the variation
in final waveform; quite a few early electronic organs
were built on this principle. The second way is to generate
much more complex waveforms, by suitable design of the
electronic circuits, and to modify these by means of
various flters to produce tonal variations. Again this
system has been used in electronic organs. The third way
is to use both types of generators and a wide variety of
modifying circuits all of which can be interconnected in a
flexible way, and this is the basis of early synthesizers.

In order to use a digital computer to produce a required
waveform, five distinguishable steps are needed. First, the
computer must be programmed to calculate the sequence
of pressure changes in the required wave ata large number
of points, probably 40,000 every second. The next step
involves generating a uniformly regular sequence of
electrical pulses at the same intervals of time. The third
step is to make the height of each successive electrical
pulse correspond to the calculated pressure in the sound
wave at that point. (These last two steps are usually
performed by a single device known as a ‘digital-to-
analogue converter’.) The fourth step is then to pass the
sequence of pulses through a filter system that effectively
smoothes out the steps between the successive pulses and
leaves the required waveform. The fifth and final step is
to play the waveform through the usual amplifier and
loudspeaker system. This technique does of course,
presuppose that the waveform for a given sound is known.

In the 1980s and 90s there was a complete revolution
in the development and use of electronic devices in music
(see ELECTO-ACOUSTIC MUSIC). Among many innovations
is the system known as MIDI (Musical Instrument Digital
Interface), which permits the control of one instrument
by another or of a complete set of instruments by a
computer. The technique of sampling involves recording
in digital form a fragment of real sound which can then
be modified, changed in pitch and mixed in an infinite
range of ways; it could be said to be the direct descendant
of musique concrete.

6. ORIGINS OF QUALITY AND TONAL DIFFERENCES.

(i) Complex mixtures of pure tones. Most of the simpler
kinds of mechanical vibrators tend to produce a waveform
not very different from that of a pure tone. Fig.10a shows
the waveform produced by a treble recorder sounding ¢”
(523 Hz) played rather loudly; fig.10b shows the same
note bowed on a violin; and fig.10¢ the same note on a
clarinet. The waveform of fig.10d sounds to be of the
same pitch, though it is produced by mixing a group of
high-pitched tones, none of which individually is below
about 2000 Hz. This last tone is sometimes described as
a tonal complex, and is said to produce a ‘residue’ effect,

b

ﬁ%ﬁﬁf

10. (a) Waveform produced by a treble recorder sounding ¢’ (523
Hz) played rather loudly; (b) the same note bowed on a violin; (c) the
came note on a clarinet; (d) waveform made by mixing a group of
high-pitched tones, none below about 2000 Hz, producing an
apparent ¢’ in the ear as a ‘residue’ effect

the apparent ¢”, in the ear (see §9 below). In quality these
notes sound quite different, though basically of the same
pitch, and the earliest attempts to account for the
variations were based on the idea that each was a different
mixture of pure tones with harmonically related frequen-
cies. Since many conventional instruments use vibrators
which, as already mentioned, have many modes of
vibration with frequencies that are harmonically related,
it is reasonable to ask whether vibration in several of
these modes simultaneously could give rise to the more
complex waveform and richer quality of real instruments
as opposed to those of simple vibrators. This turns out to
be a reasonable hypothesis, provided attention is confined
to steady, continuous tones; fig.11 shows a synthetically
produced waveform made by adding three electronically

11. Synthetically produced waveform made by (a) adding three
electronically produced pure tones, and resembling the waveform;
and (b) produced by a note on an oboe
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produced pure tones: its resemblance in general form to
that of an oboe is obvious. It is not surprising, therefore,
that the earliest attempts to synthesize sounds were aimed
merely at producing the right harmonic mixture; but the
sounds made were quite different and distinctively
electronic. The reasons for this arise from the fact that in
any real musical performance the notes used are not
steady and continuous but have to start, stop grow louder,
decay and change in all kinds of other ways.

(ii) Starting transients. No vibration can start instantly,
but the total time taken for it to build up depends on a
number of factors. Only two will be considered here: the
effect of the method of excitation (plucking, bowing,
blowing etc.) and the effect of the size and complexity of
the vibrating system.

Plucking a string is one of the more rapid methods of
setting up a vibration, which, other things being equal,
should only take one or two cycles to be properly
established; if the note is @’ (440 Hz), this happens within
0-005 seconds. But there are two factors that work against
this pattern: damping effects due to the air surrounding
the string and to the losses of energy that arise from the
bending of the material of the string cause the vibrations
to die away; and a string on its own is far too quiet to be
of any use as a musical instrument, so it is usually
connected to an amplifier of some kind that may be
mechanical (soundboard or soundbox) or electrical
(pickup, amplifier and loudspeaker). This second effect is
part of the size and complexity factor to be discussed
below.

Bowing leads to a much slower start, and indeed the
whole pattern of vibration of a bowed string is different
from that of a plucked string. Bowing falls into the
category of ‘stick-slip’ motion and permits energy to be
fed in continuously so as to produce a continuous note.
For a detailed discussion see ACOUSTICS, §II, 7.

The air in wind instruments of the flute family, which
includes many kinds of organ pipes, is set in motion when
a jet of air is directed at a sharp edge. Crudely speaking,
a series of eddies is formed, as when a stick is drawn
through water, and these travel down alternate sides of
the edge. If the edge is the mouthpiece of a flute or
recorder, or part of an organ pipe, the jet of air can be
imagined as waving smoothly back and forth sending
alternate eddies up the inside and outside of the pipe. The
resultant sequence of pressure waves travelling up the
inside may match one of the resonant periods of the pipe
and so build up a strong vibration pattern. The reflected
waves travelling back down the pipe of course interact
with the eddies and so the frequency of eddy production
and the natural resonant frequency of the pipe are not
independent of each other. When the first few eddies are
produced, however, the behaviour of the waves in the
pipe may be quite erratic and so the starting transient can
be very complicated.

In reed instruments (and brass, where the player’s lips
form the reed) the basic initiating mechanism is a sequence
of puffs of air produced by the opening and closing of the
reed. It takes a number of cycles for the natural frequency
of the pipe to react back on the behaviour of the reed and
to arrive at a steady state, and so reed instruments
generally have a rather erratic starting transient that gives
the sound a characteristic feature. Fig.12 shows the initial
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12. Initial waveforms of (a) a bowed string, (b) a plucked string, (c) a
note on a flute, (d) a note on a reed-driven pipe

waveforms of a bowed string, a plucked string, a flute
and a reed-driven pipe.

Few primary vibrators are loud enough on their own
to be used as musical instruments, so amplification is
usually needed. For example, the string of a violin without
the body can hardly be heard, and the vibrations in the
pipe of a brass instrument are muffled without the horn
at the end. But if instruments become ‘coupled systems’,
then odd effects occur during the starting period. The
reed and pipe are examples of this. What happens, in
general terms, is that one of the two parts of the system
starts to vibrate and passes some of its energy to the other;
then there may be a ‘difference of opinion’ as to the
frequency at which vibration should take place, and it
may be many cycles before the vibration is stably
established. The period of ‘argument’ is the starting
transient.

The aural effect of the starting transient — whether it is
caused by the method of initiation or by the coupling of
two systems or, as is usual, by both processes — is
pronounced. It can best be demonstrated in a negative
manner by listening to a recording of a note from which
the first quarter of a second or so has been erased. The
whole character of the note is changed. If, therefore, the
sound of a particular instrument is to be synthesized it is
not sufficient to produce the right steady-state waveform;
the right starting transient must be produced as well.
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13. Envelope shapes on a cathode-ray oscilloscope showing (a) a
harpsichord note, (b) a staccato note on a flute, (c) a staccato note on
a french horn, (d) and (e) synthetic staccato notes sounding
respectively like a plucked string and a harmonium

(iii) Envelope shapes. FEven after the note has started
there are usually further changes: a plucked string may
give vibrations that gradually die away, a bowed string
may vary in loudness with the pressure and velocity of
the bow, a reed instrument may rise and fall slightly in
loudness, and a complex mixture of modes of vibration
may change the sound’s composition with time. The
changes in amplitude of the waves associated with a note
are usually called the ‘envelope’. A cathode-ray oscillo-
scope with its spot moving slowly horizontally compresses
the waves so much that the individual vibrations cannot
be seen, but the envelope becomes clearly visible. Fig.13
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14. The sequence of envelope shapes in the word ‘perfection’
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shows the envelope of a harpsichord note (4), a staccato
note on a flute (b), and a staccato note on a french horn
(c).

In synthesizing sounds electronically the ‘envelope
shaper’ is an important element; fig.13d and e show
synthetic staccato notes with triangular envelopes. The
waveform is the same for both, but the envelope has
simply been reversed, and the aural effects are totally
different: d sounds vaguely like a plucked or struck
instrument; e like some kind of harmonica or harmonium.
Trace e could equally well be produced by playing the
tape for d in reverse. The well-known trick of recording a
piano piece and playing it backwards is a good way of
illustrating how important the envelope is: reversing the
tape can have no effect on the harmonic content, and yet
the tone of the instrument is completely changed.

Envelope shapes play an essential part in human speech.
The consonants are usually fairly drastic changes in
envelope shape. A plosive, like ‘p’, makes a fairly rapid
initiation of random noise (air escaping when the lips are
opened) leading on to a vowel, a steady note. If the noise
is allowed to rise in amplitude more slowly, the result is
an ‘f’. Fig.14 shows the sequence of shapes in the word
‘perfection’.

(iv) Formants. As has been noted, most instrumental
sounds involve some kind of source, usually rather weak,
and some means of making it louder. Unfortunately,
because it complicates matters — or fortunately, because
it adds such richness and variety to instrumental tone —
this amplification is never done without also changing the
waveform to some extent. It is difficult to indicate with
any degree of precision the kind of change that is made to
the wave, but if the distribution of harmonics contributing
to the wave before and after amplification is examined, it
is usually possible to find a characteristic that can be
specified. If a graph of the degree of amplification at each
frequency is plotted the result is sometimes described as
the ‘formant characteristic’ of the amplifier or instrument.
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For example, increasing the treble gain on an electronic
amplifier makes any hiss on the recording louder and
increases brilliance; turning up the bass gain emphasizes
any turntable rumble and muffles the tone. In each
instance a different formant is being imposed. For a given
setting of the treble and bass controls the formant
characteristic is constant, but the frequencies present in
the emerging wave still depend on those present before-
hand. The amplifier imposes something of its own
character on all sounds passing through it. The concept
of the formant characteristic is important in many
branches of acoustics.

In musical instruments the basic vibrator produces the
initial set of harmonics, but these are modified by the
formants of the amplifier (which may be a horn, the body
of a string instrument, the side holes in a woodwind
instrument etc.). The net sound emerging is then modified
by the formant of the room. If the sound is being recorded
or transmitted elsewhere, the microphone, transmitting
apparatus or recorder all impose further formants, and
then the ears and hearing mechanism in the brain have
their own formants. (Deafness over some part of the
frequency range is surprisingly common.) The result of
all this is, of course, that the wave that is finally perceived
by the brain may be very different from the one that
started out from the basic vibrator.

Formants are important in all instruments, though,
strictly speaking, for some they may be difficult to identify
as they may change from note to note. Some would argue
that the phenomenon is then no longer properly called a
formant effect, but one may speak of constant or variable
formants to take both types into account. An example of
a constant formant with a powerful influence on tone is
that of the body of a string instrument; some changes may
occur as the player moves from one string to another, or
from changes in the tension of the strings reacting on the
body, but these are usually small and the main amplifying
characteristic of the body remains the same over the
range. An example of a variable formant is that of a
clarinet, where the formant comes from a complex mixture
of effects controlled by the bore variations, the positions
of the finger-holes, the number of holes or keys that are
depressed and so on. The art of the clarinet maker is to
ensure that the formant characteristic does not change
too violently as the player moves from one note to
another.

One of the most essential aspects of formants for
human beings is their part in the control of the voice. The
vocal cords produce a basic tone that can be varied, as
already described, in envelope, but the tone can also have
many different formants imposed on it by the amplifica-
tion and resonances of all the various cavities of the nose,
throat and mouth. Some of these are not variable and
impose several of the characteristics that distinguish one
speaker from another, male from female, youth from age
and so on. Others are variable and allow the vowel sounds
to be produced. It is now usually held that there are four
fairly sharply defined peaks in the frequency distribution
curve of any vowel, and that it is the position of these
peaks that determines the vowel; their positions, for a
given vowel, are the same whether the voice is high or
low in pitch and whether the vowel is being spoken or
sung. Fig.15 shows the generally accepted centres of the
three main peaks for some common vowels. The middle
formant is probably the most important one, as may be
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15. Diagram showing the generally accepted centres of the three
main peaks for some common vowels (after Winckel)

demonstrated if one holds the mouth in the shape required
for saying ‘Ooh’, whispers loudly, and then changes the
shape to ‘Ah’ and back a few times; there is an apparent
change in pitch that may be anything from a Sth to an
octave depending on the particular quality of vowel
sounded. This change corresponds to the big change in
position of the middle formant peak.

7. THE PHYSICS OF TUBES AND HORNS. The elementary
acoustics of pipes introduced in §5 above needs some
amplification, since the previous treatment relates only to
open cylindrical tubes. In real instruments an end might
be partly closed in a number of ways; also, a pipe might
have a succession of conical bores with different cone
angles interspersed with cylindrical sections of different
diameters.

To reconsider first the simple picture given earlier of
the way in which waves build up to resonance in a pipe,
suppose there is some kind of plate, driven like the piston
of a steam engine so that it alternately compresses and
rarefies the air just outside the end of a pipe in a sinusoidal
way (such a device, called a pistonphone, is sometimes
used as a source of sound for testing microphones), and
suppose that the piston cycle has a frequency # and the
pipe which is open at both ends has a length equal to half
a wavelength for that frequency. The first compression
will travel the half wavelength, be reflected as a rarefaction
and arrive back at the initial end, where it would usually
create a compression ready to start again. Since it has
travelled one wavelength altogether it will be exactly in
step with the next compression. Suppose, however, that
the length is something other than a half wavelength. The
initial wave will then arrive back at some other point of
the cycle; the effect will be like pushing a swing at the
wrong moment, and the wave will die out. If the length is
a quarter wavelength (or if the first pipe is excited at 2#),
the first wave will arrive back exactly halfway between
two compressions and the rarefaction produced by the
plate will completely neutralize the wave in the pipe.
However, if the excitation is not sinusoidal but consists
of a very brief compression pulse, then at 21 there will be
a build up, as there will be at 4 or {#. Sinusoidal excitation
excites resonance at only one frequency in a simple system;
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pulse excitation may excite resonance at a great many
multiples and sub-multiples of this frequency.

In a reed instrument such as the clarinet, it can be
shown (without going into detail) that the reed, which
sets up oscillations in a pipe, is not a linear device. Its
behaviour is not symmetrical: relatively small forces in
one direction completely close the reed, whereas much
larger forces can be applied in the opposite direction and
the reed goes on opening. Thus the form of air control
exerted by a reed is rather more like a succession of pulses
than a sine wave; it is the right sort of excitation to set up
resonance in several modes, and so to produce the
characteristic tonal complex that would not be possible
with pure sinusoidal excitation.

The last matter to be considered is reflection from the
end. In woodwind instruments the reflection is not from
the end except for the lowest note; it is more likely to be
from a side hole, and there will be other, regularly spaced,
side holes open beyond this. There may be a bell, and it
can easily be shown that this affects the tone colour for
only the lowest one or two notes; for the higher notes
most of the sound is escaping through the side holes.
Finally, in a brass instrument there is a bell that is always
operative. The way the wave is reflected is critically
dependent on the shape and spacing of the holes and on
the shape of any bell. If a high proportion is reflected,
good oscillations are set up in the pipe but little sound
emerges; if the proportion reflected is low, it may be
difficult to set up oscillations, but those that are set up
emerge quite strongly. Benade has made a close study of
all these phenomena, and has measured the ‘input
impedance’ of pipes. In general terms, the higher this is at
a given frequency the greater is the tendency for there to
be oscillations maintainable at that frequency. Fig.16a
shows this property plotted against frequency for a plain
cylindrical pipe closed at one end only. The peaks are all
at odd multiples of 63 Hz and correspond to the harmonics
predicted by simple theory. For fig.16b a trumpet horn
has been added to the open end. Two obvious things
happen: the sequence of frequencies changes to become
quite different from the odd-harmonic sequence; and
there are practically no peaks above 1500 Hz. This is
because the horn-shaped end ceases to act as a reflector
above this frequency, and nearly all the energy leaks out
into the air instead of maintaining oscillations within the
pipe. The cut-off frequency above which waves are not
properly reflected also occurs in woodwind instruments
and is related to the spacing and size of the open finger-
holes below the one defining the note. It is possible to
change the frequerncy of one particular peak independently
of the others by changing the bore diameter at certain
critical points. Instrument makers need all the variables
of hole position, hole size, bore size etc. in order to
produce instruments that play in tune, give the required
harmonic mixture and produce components that are in
tune and cooperate well. (For further information on
wind instrument sounds see ACOUSTICS and articles on
individual instruments.)

8. METHODS OF ANALYSIS AND STUDY.

(i) Experimental. The measurement and analysis of
musical tones is not easy. For a steady, unchanging tone
the quantities that are most useful are the predominant
frequency associated with it, the intensity or loudness,
and the relative amplitudes and frequencies of the other
components of the complex. If, however, the note is
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16. Graph showing the ‘input impedance’ plotted against the
frequency (a) for a plain cylindrical pipe closed at one end and (b) for
the same pipe with a trumpet horn added (after Benade, 1973)

changing with time, then the way in which all these
separate quantities change must also be recorded.

Intensity, or loudness, is usually measured by means of
a microphone, amplifier and meter, but careful calibration
is necessary and the relative positions of the microphone
and source, the surroundings and many other factors
affect the result. Sound level meters are available with
built-in filters that have a frequency characteristic resem-
bling that of the average human ear, but for an accurate
estimation of the loudness of a sound it is necessary to
measure the amplitude at a series of frequencies over the
audio spectrum.

The ready availability of cheap and powerful computers
and microprocessors has led to the almost universal
adoption of digital techniques for the analysis of rapidly
varying waveforms. An analogue-to-digital converter
samples the magnitude of the disturbance at intervals that
may be as short as desired (usually around 40,000 per
second), yielding a sequence of numbers. Once in digital
form, the signal can be processed by a mathematical
technique known as Fourier analysis (see §8(ii)) to show
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how the amplitude of each frequency component changes
over the duration of the signal. Information about the
frequency content of a signal can be displayed in a number
of ways. One is the sonagram, a two-dimensional diagram
with frequency on the vertical scale, time on the horizontal
scale, and intensity represented either by colour or by a
grey scale. Fig.17 shows a sonogram of the first five
seconds of a harpsichord note. Each of the vertically
equidistant horizontal bars represents one of the almost
exactly harmonic frequency components of the harpsi-
chord sound; the different rates of decay of the compo-
nents can clearly be seen.

The sonagram is generated by dividing the digital sound
sample into a series of short time slices, on each of which
the Fourier analysis is performed. The frequency spectrum
of each slice can be individually displayed if desired, and
the information contained in the frequency spectrum can
be used to compute the loudness of the sound or the
predominant frequency at the chosen time. Fig.17b, cand
d show the frequency spectra at the beginning, middle
and end of the harpsichord sound sample in Fig.17a.

With a suitably fast processor, the frequency spectrum
can be displayed on a screen within a small fraction of a
second of the data capture, and the display can be updated
several times a second. The system is then described as a
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real-time analyser. Using a real-time analyser, a performer
can see immediately how a change in the method of sound
production affects the frequency spectrum of the sound.

Other modern but non-electronic techniques are also
used in studies of musical sounds. High-speed cinematog-
raphy can reveal a great deal of useful information and
has played an important part, particularly in understand-
ing the behaviour of reeds and of vibrating strings. The
modern optical technique of holography is playing a part
in revealing the way in which the body of a violin or other
string instrument is vibrating. The patterns produced are
something like those of the Chladni plate, but to produce
sand figures on violin back plates large vibrators are
needed and, though useful, measurements probably do
not correspond to the behaviour of the instrument when
it is played normally. Holographic techniques show up
the vibration patterns even when the notes being played
are extremely quiet. Fig.18 shows holographically pro-
duced vibration patterns for a violin back plate.

(i) Theoretical. No discussion of the theoretical aspects
of sound would be complete without some mention of the
ideas of Fourier analysis and synthesis, though it is not
easy to discuss these topics in any detail without fairly
complicated mathematics. The basic notion, first formu-
lated by Fourier in about the 1820s in relation to his
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17. (a) Sonagram of a harpsichord note showing the different rates of decay of the frequency components; (b), (c) and (d) show the beginning,

middle and end of the harpsichord note shown in (a) (after H.A. Wright)
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18. Holographically produced vibration patterns for a violin back
plate (after Jansson, Molen and Sundin)

(a)

Amplitude

b

Amplitude

() :

Amplitude
o
3
a

19. Examples of summations of harmonics in building up complex
waves: (a) the first three harmonics, (b) the sum of the first two, (c)
the sum of the first three (after Backus, 1969)

studies of heat flow, is that any periodic variation in a
quantity, no matter how complicated, may always be
represented as the sum of a number of simple sine waves
with frequencies that are multiples of the basic repeat
frequency of the wave (the fundamental). The components
(or harmonics) have different amplitudes and phase
relationships, and there may be an infinite number of
them. The basic notion is not difficult to accept; fig.19
shows some examples of summations. The point that is
difficult to accept, and indeed for which there is no formal
proof though it is clearly true in practice, is that for any
given wave there is only one combination of amplitudes
and phases. The consequence of this is that it is possible

in principle to take any complex periodic wave and to
analyse it into a specific set of components, though it is a
process that has only really become practicable for
complex waves since the introduction of computer
analysis. Fig.20 shows the result of summing three
components that are the 2nd, 4th and Sth harmonics of
the same fundamental. If the signal shown lasts for one
second, the three components have frequencies of 6, 12
and 15 Hz respectively. Though no fundamental compo-
nent is present, the combined wave repeats at intervals
corresponding to the fundamental frequency of 3 Hz.
This is an important point to which reference will be
made in §9 below. The essence of this kind of analysis,
however, is that the basic wave is periodic.

But a single note from a piano or harpsichord, for
example, has no part that is strictly periodic, since the
amplitude after the initial transient section is decaying all
the time, and indeed different components, as has been
observed, decay at different rates. Fig.20 may help to
show how the analysis can be extended to cover this
problem. If the diagram was drawn with three components
which were the 200th, 201st and 202nd harmonics, and
if the same frequency were used for the first component
(i.e. 6:00 Hz), the second component would have a
frequency of 6:03 Hz and the third 6-06 Hz. It is not
difficult to see that the waveform would now repeat with
a fundamental of 0-03 Hz. Thus by making the harmonics
very close together it is possible to take care of a wave
that repeats only after long periods; and making the
harmonics infinitesimally close will enable one to deal
with a wave that never repeats precisely. So the same
technique of analysis can be used for non-periodic waves,
provided one takes harmonics that are so close together
that they form a continuous sequence. This kind of
analysis of transients, using the digital techniques men-
tioned, is yielding important information about the
transient behaviour of real instruments. In this form it is
usually termed ‘Fourier transform’ or ‘Fourier integral’
analysis.

9. TONES IN SEQUENCE AND COMBINATION. It has often
been implied that the reason why some sequences or
combinations of notes sound pleasant and acceptable
whereas others are disturbing or unpleasant is simply that
the brain ‘likes’ simple frequency ratios, such as the octave
(1:2), the Sth (2:3), the 4th (3:4). The numbers themselves,
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20. (a)~(c) Calculated curves for pure tones of the 2nd, 4th and 5th
harmonics of the same fundamental; (d) sum of the three
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of course, cannot have any significance, but a study of the
combined waveforms produced by adding two pure tones
shows that the combination itself changes at a rate that
depends on how close the component frequencies are to
each other. For the Sth, as an example, with tones of 400
and 600 Hz the combined wave repeats at a frequency of
200 Hz: exactly half the lower tone. For the 400:413 ratio
(just under a semitone) the frequency of repeat of the
combined wave form is 13 Hz. In other words, the
combined wave is far more complicated and goes through
a complex sequence of different patterns taking nearly 16
times as long to repeat as does that for the 5th. It may be
that the ear and brain find this complicated sequence
much more difficult to cope with than the simple rapid
alteration that occurs with the Sth.

If the tones are close to each other in frequency the
phenomenon of beats can be heard clearly. Tones of 400
and 402 Hz, for example, give a pattern that completes a
cycle twice every second. The beat effect is identical with
the sequential effect described above for the Sth or the
400:413 ratio, but, because for these the repeat is rather
rapid, it is not heard as a beat. Helmholtz suggested that
beats cause the unpleasantness of dissonant intervals, and
he went on to show that if two tones, themselves a long
way apart in frequency, have upper partials that happen
to be close enough to give beats, a ‘roughness’ in the
sound is still heard. For example 400:600 is the perfect
Sth, and the 3rd harmonic of the lower tone and the 2nd
harmonic of the upper tone are both 1200 Hz. If the 600
Hz is raised to 605 Hz, the harmonics become 1200 and
1215, and these give rise to beats at 15 Hz that would be
quite unpleasant.

In practice it is found that even when two pure tones
are added a harsh effect can result, though there are no
upper partials to beat with each other. In such cases a
great many other tones can be heard as well, especially if
the basic tones are loud. The standard experiment
demonstrating this is to sound one tone (say, for example,
1320 Hz) steadily, and to sound a second tone (say 880
Hz) and allow its frequency to glide slowly up undil it
reaches 1320 Hz. A strong ‘difference tone’ that descends
in pitch from 440 Hz to zero is clearly heard. The whole
range of additional tones are called ‘combination tones’
and, for basic tones of frequencies f and f,, they have
frequencies such as f; + f5, f1 + 2f5, 2f, + fo, etc., and f; -
for fo = 2f2, 2f1 = 5, etc. It can be shown mathematically
that they can arise from non-linearity in any part of the
system, and it is now accepted that very loud tones
produce non-linear effects in the ear itself. Perhaps
consonarce is perceived because the number of combina-
tion tones is small, whereas for a dissonant interval a vast
array of combination tones arises. This can be shown
simply by making the calculations for combination tones
with the ratios 400:600 and 400:413 (Table 1). For the
perfect Sth they form a series neatly spaced at 200 Hz
apart; but for the second pair the collection is a motley
one, and more and more unrelated tones arise as the series
is developed. However, dissonance still occurs when the

TABLE 1

i b B-f B+ hH 2fi + £ 26 - i 26 - fi 2fi + £
400 600 200 1000 16000 8000 2000 1400
400413 13 813 1226 426 387 1213

notes are sounded quietly, so one must look for other
explanations of the additional tones than that of
non-linearity.

This is an area of considerable controversy, but one
fact makes it obvious that combination tones do not
provide the answer to the problem of dissonance. If three
tones of 400, 600 and 800 Hz are combined, a difference
tone of 200 Hz is heard whether the tones are loud or
quiet. If the frequencies are 430, 630 and 830 Hz, the
difference tone is still 200 Hz and is heard when the tones
are sounded loudly; but if they are sounded quietly a
higher tone is heard: about 210 Hz in this example. This
clearly is not a difference tone; it is usually called a
‘residue tone’. The fact is unquestioned; but the origin of
the tone and its contribution to the consonance-disso-
nance problem is still a matter of dispute.

As for musical scales, it is enough to note that they
contain many possible combinations that blend together
in a consonant way. It is not surprising, therefore, that
the intervals involved in scales tend to be the rather simple
ones and that, at least from the standpoint of physics,
there is a close link between the sequence of ratios in a
scale and the ratios for consonant intervals. (For further
details see SCALE and TEMPERAMENTS.)

10. THE EFFECT OF ACOUSTIC ENVIRONMENT. If two
people were to try to conduct a conversation while
suspended by some hypothetical device in a region far
removed from all solid objects, they would find difficulty
unless they were quite close together. Fortunately people
at least normally stand on solid ground when they
converse. Immediately the problem is reduced: some of
the sound waves strike the ground and are reflected — not
so precisely as is light from a mirror, but nevertheless in
broadly the same way — and so the hearer receives two
sets of waves, direct and reflected. Provided the total
distances travelled by each are not too different this leads
to a louder sound. If the difference in distance is great the
brain recognizes the time difference and the result is an
echo.

If a single wall is added behind the speaker, some waves
will still travel direct to the hearer, some will be reflected
from the floor, some from the wall, and some first from
one and then the other; the result is four times as much
energy in the direction of the hearer. This process goes on
as surfaces are added. If the reflection is good, as it is
when the walls are smooth and hard, the result may be
quite intolerable because any sound created is reflected
round and round from one surface to another and takes a
long time to die away; each syllable spoken is blurred by
those immediately before, and all intelligibility is lost.
Some swimming baths in which there are large glass and
tile surfaces, as well as the water surface itself, all acting
as good reflectors, demonstrate well this effect of ‘rever-
beration’. It is usually measured in terms of the ‘reverber-
ation time’, roughly the time taken for a loud sound to
become inaudible.

The first essential scientific problem in acoustic design
is thus to achieve a compromise between the need to
introduce reflecting surfaces to strengthen the sound
produced and the need to keep reflection within bounds
to maintain intelligibility. The way in which this can be
done is discussed under AcousTics, §I. Scientifically the
question is not difficult: the problem is to agree on the
characteristics that one is trying to achieve, and also to
design a hall that will perform many different funcrions,



each of whose acoustic requirements may be quite
different.

Just as the body of a violin amplifies non-uniformly
and so ‘colours’ the sound produced by the string as well
as merely making it louder, so the resonances in a room
can colour musical tones. It has been shown how the
Chladni plate demonstrates modes of vibration for two-
dimensional devices, and that as the frequency of the
mode goes higher so the size of the regions between the
nodal lines becomes smaller and the number of nodes
increases. The same kind of thing happens in three-
dimensional boxes, and nodal surfaces exist. As the
frequency goes up, so the spacings between these surfaces
shrink. Thus even a large room may break up into a large
number of regions and hence provide resonances at
frequencies well within the audio range. A classic example
of this can be heard by listening to a high note while
moving the head sideways rather slowly. The nodal
surfaces are close together and the loudness goes up and
down quite rapidly as one moves through them. Thus the
frequencies at which resonant modes are present will be
amplified and a formant effect arises. The pleasure of
singing in the bath is largely caused by the fact that the
room is small and has hard surfaces, and hence has a
number of well-separated resonances in the audio region;
quite a modest singer can produce a fine ringing tone to
his own satisfaction as a result of modification by the
formant. Clearly this factor is of great importance in
studios from which recordings or radio transmissions are
produced. The placing of the microphones and performers
in relation to the walls and other surfaces changes the
particular modes excited and provides ways in which the
sound engineer can vary the coloration to achieve a
desired effect.

Various techniques have been developed for artificially
changing the acoustic environment in a room. These are
described under ACOUSTICS, but the essence of them all is
to modify the way in which the reflections occur
(decreasing them by covering surfaces with absorbent
material or increasing them by providing microphones
and loudspeakers, and introducing artificial time delays
to simulate the acoustic path differences), or by modifying
the formant characteristics. The latter method involves
artificially amplifying certain frequencies corresponding
either to specific modes that are not being stimulated or
to modes of desirable frequencies that do not occur
because of the particular disposition of the elements of
the hall. All these techniques are fraught with difficulties,
mainly because it is not easy to avoid the feed-back howl
previously described, but also because again it is hard to
decide on the required features. A formant characteristic
and reverberation time that suits a solo performer may
not necessarily suit the audience and vice versa. However,
some fascinating results have been achieved.

11. ProsPECT. The question often arises whether it will
ever be possible to synthesize precisely the tone of a given
instrument, or even of a complete orchestra. The answer
is that it is possible now; given the necessary time and a
large enough computer one can match exactly the required
waveform of any instrument or combination of instru-
ments. But it can take a long time, even with the biggest
computers, to produce even a few seconds of complicated
music, and so in practice such an operation is of limited
use. The relative success of synthesizers as opposed to
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computers is because of the speed at which they can
operate.

The biggest problem in the production of synthetic
sounds is principally that of devising methods of control,
and methods of scoring that can permit the techniques to
be used with the same flexibility as traditional instruments;
the use of MIDI and other techniques led to enormous
advances in the 1980s and 90s. Computers and synthesiz-
ers provide a great deal of information about the
important features of the waves produced by traditional
instruments, and a fruitful collaboration between instru-
ment makers and scientists is possible. Physics is beginning
to produce much more realistic explanations of the
behaviour of real instruments, and in many cases these
give the instrument maker ways of predicting with much
greater precision the modifications needed to improve
tone quality.

Developments in material science may possibly have
something to offer the instrument maker. Materials such
as cane for reeds, the various woods used for the bodies
of string instruments etc. are not susceptible to control.
The range of naturally available material must be scanned
and selections made on the basis of experience. If it
becomes possible to manufacture materials with the
desired properties, predictable in advance and liable to
much less change with time than natural materials, this
would be a great boon. It seems that costs might be
prohibitive for all but the simplest mass-produced instru-
ments, but there may well be rapid advances in the near
future.

There remain many problems in understanding the
mechanism of hearing, the origins of consonance and
dissonance, the precise way in which the ear and brain
respond to transients, and the phenomena of aural
illusions. In the last category the rapid developments in
stereophony, quadraphony and the creation of complete
sound environments are uncovering almost as many
fascinating problems as they solve, and psychoacoustics
is again an area where many new insights are appearing.
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